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EXECUTIVE SUMMARY

Introduction

Roadside ditches are designed to minimize local flooding risk by

draining water away from the roadway. In addition to transport-

ing road runoff, roadside ditches play a critical role in the

transport of pollutants and the increase in peak storm flows since

they substantially alter natural flow pathways and routing

efficiencies. An improved management of roadside ditches is not

only crucial to roadway maintenance but also lays the foundation

for assessing their impact on the natural hydrologic and nutrient

transport network. While ditch networks are being increasingly

incorporated in distributed hydrologic modeling, the ability to

accurately extract drainage networks from remote sensing data

remains challenging. Specifically, high-resolution, large-scale data

that can capture the ditches, often narrow and covered by vege-

tation, through an efficient field survey is the current bottleneck.

Mobile LiDAR Mapping Systems (MLMS) have witnessed

tremendous growth of their applications in the field of remote

sensing. Such systems are capable of collecting high-quality, dense

point clouds in an efficient manner. Mapping ditches using high-

resolution LiDAR can be a cost-effective alternative to field

surveys for prioritizing and planning ditch maintenance. It also

eliminates the unnecessary exposure of survey crews to work

hazards in traffic zones. This study assesses the feasibility of using

mobile LiDAR techniques for mapping roadside ditches for slope

and drainage network analyses. The following research aims are

addressed: (1) evaluate the ability of different MLMS grades to

provide quantitative measures of the condition of roadside ditches

and (2) develop data processing strategies for characterizing the

ditch lines.

Findings

N The performance of different grades of MLMS units was

assessed in terms of spatial coverage, relative vertical

accuracy, and absolute vertical accuracy. These MLMS

units included an unmanned ground vehicle, an unmanned

aerial vehicle, a portable Backpack system along with its

vehicle-mounted version, a medium-grade wheel-based

system, and a high-grade wheel-based system.

N Point cloud from all the MLMS units agreed within the ¡3

cm range for solid surfaces, such as paved roads, and ¡7 cm

range for surfaces with vegetation along the vertical

direction.

N The portable Backpack system that could be carried by a

surveyor or mounted on a vehicle was the most flexible

MLMS for mapping roadside ditches, followed by the

medium-grade wheel-based system.

N The cross-sectional/longitudinal profiles of the ditch were

automatically extracted from LiDAR data and visualized

both in 2D image and 3D point cloud.

N The slope derived from the LiDAR data was found to be

very close to highway cross slope design standards of 2% on

driving lanes, 4% on shoulder, as well as a 6-by-1 slope for

ditch lines.

N Potential flooded regions are identified and visualized both

in point cloud and images. A recall score of 54% and 92%

was achieved by the medium-grade wheel-based and vehicle-

mounted portable systems, respectively.

Implementation

N System calibration: The relative position and orientation

(hereafter denoted as mounting parameters) between the

LiDAR and imaging sensors and the GNSS/INS unit are

estimated using an in-situ calibration procedure. This

procedure estimates the mounting parameters by minimizing

discrepancies among conjugate points, linear features, and/

or planar features obtained from different LiDAR units and

cameras in different drive-runs/flight lines.

N Ground filtering: A ground filtering approach adapted from

the cloth simulation algorithm is proposed to separate bare

earth points from above-ground points. First, the original

cloth simulation approach is used to extract the bare earth

point cloud. Next, the rigidness of the cloth is redefined

based on the point density of the bare earth point cloud.

Finally, the cloth simulation is applied again to obtain a

refined bare earth point cloud and the final digital terrain

model (DTM).

N Cross-sectional profile extraction: A cross-sectional profile

with a given length and width can be extracted from the

point cloud, bare earth point cloud, and/or DTM at any

location. The orientation of the profile should be perpendi-

cular to the direction of the road, which is derived using the

vehicle trajectory information. Once the profile is extracted,

the slope along the profile is evaluated using the bare earth

points. The results are visualized in both 3D point clouds

and 2D images.

N Drainage network and longitudinal profile extraction: The

drainage network is identified by calculating the flow

direction and flow accumulation using the DTM. A long-

itudinal profile is the one along the ‘‘valley’’ of a ditch. It is

identified by removing tributaries and connecting major

streams of the drainage network.

N Potential flooded region detection and visualization: Potential

flooded regions can be identified by detecting areas where

the LiDAR points are absent. First, a binary point density

image over the region of interest is generated. A median filter

is then applied to reduce the noise caused by irregular point

distribution. Next, the boundary between the black and

white cells is traced. A region of interest is reported if its area

is larger than a user-defined threshold. The reported regions

of interest are visualized both in 3D point cloud and 2D

images.

N MLMS units: The MLMS units as well as data acquisition

and processing strategies developed by the research team can

collect information of existing ditch geometry with efficient

field surveys. The tool can be used for comparison between

planned-built and existing ditch geometries at a network and

project level for the INDOT.
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1. INTRODUCTION

Roadside ditches are designed to minimize local
flooding risk by draining water away from the road-
way. In addition to transporting road runoff, roadside
ditches play a critical role in the transport of pollutants
and the increase in peak storm flows since they sub-
stantially alter the natural flow pathways and routing
efficiencies (Buchanan et al., 2013; Schneider et al.,
2019). An improved management of roadside ditches is
not only crucial to roadway maintenance, but also lays
the foundation for assessing their impact on the natural
hydrologic and nutrient transport network. While ditch
networks are being increasingly incorporated in dis-
tributed hydrologic modeling, the ability to accurately
extract drainage networks from remote sensing data
remains challenging (Ariza-Villaverde et al., 2015;
Levavasseur et al., 2015; Metz et al., 2011; Roelens,
Höfle, et al., 2018). Specifically, high-resolution, large-
scale data that can capture the ditches, often narrow
and covered by vegetation, through an efficient field
survey is the current bottleneck. Previous studies have
identified the lack of maintenance of roadside ditches
due to limited resources including time, labor, equip-
ment, and funding (Schneider et al., 2019). It was noted
that an estimated one-third to one-half of the ditches
in New York State were in fair to poor condition
(Schneider et al., 2019). Advancements in remote sen-
sing data acquisition, processing, and analysis facilitate
the investigation of the hydrological effects of roadside
ditches and benefit ditch maintenance practices.

Mobile LiDAR mapping systems (MLMS) have
witnessed tremendous growth of their applications in
the field of remote sensing. Such systems are capable
of collecting high-quality, dense point clouds in an
efficient manner. Previous studies reported on the use
of MLMS for automated lane marking detection (Cheng
et al., 2020; Wen et al., 2019), runway grade evaluation
(Lin et al., 2019), and debris/pavement distress inspec-
tion (Ravi et al., 2020). Mapping ditches using high-
resolution LiDAR can be a cost-effective alternative to
field surveys for prioritizing and planning ditch
maintenance. It also eliminates the unnecessary expo-
sure of survey crews to work hazards in traffic zones.
This study assesses the feasibility of using mobile
LiDAR techniques for mapping roadside ditches for
slope and drainage network analyses. The following
research aims are addressed: (1) evaluate the ability of
different MLMS grades to provide quantitative mea-
sures of the condition of roadside ditches; and (2)
develop data processing strategies for characteri-
zing ditch lines. The rest of the report is structured
as follows: Section 2 provides an overview of prior
research related to mapping natural streams and man-
made ditches; Section 3 describes the data acquisition
systems and field surveys; Section 4 introduces the
proposed ditch line characterization strategies; Section
5 presents the experimental results and discussion;
Section 6 summarizes the research key findings and
provides directions for future work.

2. RELATED WORK

Remote sensing techniques, including satellite and
aerial imagery as well as airborne LiDAR, have been
the dominant tool for mapping natural stream net-
works and man-made drainage ditches. While most of
the major rivers can be properly mapped, the challenge
lies in capturing narrow streams and man-made ditches.
Levavassur et al. (2012; 2015) conducted exhaustive
field surveys of man-made drainage networks to inves-
tigate the extent to which drainage density depends on
agricultural landscape attributes such as topography
and soil type. While aerial photographs assisted in
locating elements of the drainage network, the authors
noted that remote sensing data may not be accurate
enough to map ditches that are less than a meter wide
(Levavasseur et al., 2015). Hydrological analyses are
common approaches for automated drainage network
extraction. Such analyses typically require a digital
terrain model (DTM) derived from remote sensing
data. A DTM can be generated from airborne LiDAR
data (Barber & Shortridge, 2005; Bertels et al., 2011;
Ibeh et al., n.d.; Murphy et al., 2007), airborne photo-
grammetric data (Ariza-Villaverde et al., 2015; Murphy
et al., 2007), spaceborne radar data (Metz et al., 2011),
UAV photogrammetric data (Günen et al., 2019), and
most recently, UAV LiDAR data (Pricope et al., 2020).
Then, the stream network can be extracted by calculat-
ing the flow direction and flow accumulation for each
DTM cell and using a threshold to determine DTM
cells that represent streamlines. All these studies suggest
that using high-resolution DTM provides more accu-
rate results, especially when the drainage network is
dense.

Although most of the existing literature has high-
lighted the importance of LiDAR in generating eleva-
tion models, only a few have focused on characterizing
ditches. In one of the early efforts, Bailly et al. (2008)
utilized LiDAR-derived elevation profiles and carried
out curve shape analysis to detect and classify any
concavity within the elevation profiles as a ditch or
non-ditch entity. The ditch detection results were vali-
dated through ground surveys. A high omission rate
was observed due to vegetation covering ditches or the
LiDAR data not being dense enough. Rapinel et al.
(2015) derived DTMs from airborne LiDAR data with
different point densities and used an object-based image
analysis approach for drainage network extraction. The
focus was to estimate ditch depth and the results were
validated by field measurements collected by a total
station. Their results showed that if the point density
fell below two points per square meter, the ditch depth
could become underestimated. Moreover, the quality of
the generated drainage network map depends primarily
on the point density of LiDAR data rather than the
interpolation method used for DTM generation.
Instead of using DTM, Broersen et al. (2017) used clas-
sified airborne LiDAR point cloud to detect drainage
networks. Two approaches were proposed: 2D skeleton
and 3D skeleton. The former took advantage of the
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property that LiDAR has no return over water bodies,
and detected ditches filled with water by finding the
concave hull of the ground and vegetation points. The
latter utilized the 3D morphology of the landscape to
identify ditches that are dry or covered by canopy. One
of the limitations of this study is the tendency to find
and classify unexpected concavities as watercourse.
Roelens et al. (Roelens, Höfle, et al., 2018; Roelens,
Rosier, et al., 2018) extracted drainage ditches directly
from irregular airborne LiDAR point clouds with an
average point spacing of 0.10 m instead of interpolated
DTM. The LiDAR points were classified as ditch and
non-ditch points using a random forest classifier. Their
approach requires radiometric features (RGB, inten-
sity, and vegetation indices) for improved results in
grasslands.

Previous studies suggested that the ground sampling
distance of the DTM or the inter-point spacing of the
LiDAR data is critical for ensuring the quality of ditch
mapping. The point density of airborne systems may not
be adequate to capture man-made drainage ditches,
which can be very narrow and densely covered with
vegetation. This study utilizes ground-based MLMS
units which have a much higher point density and accu-
racy when compared to airborne systems for mapping
roadside drainage ditches. Moreover, ditch line charac-
terization strategies using LiDAR data are developed.

3. DATA ACQUISITION SYSTEMS AND
DATASET DESCRIPTION

This section starts with an introduction of the plat-
form architecture, sensor integration, and system calibra-
tion of the MLMS units used in this study. Further, we
provide information regarding the field surveys and
acquired datasets.

3.1 Specifications of Different MLMS Units

A total of six mobile mapping systems are used in
this study: an unmanned aerial vehicle (UAV), an un-
manned ground vehicle (UGV), a Backpack-mounted
portable system (hereafter called Backpack), the
portable system mounted on a carrier vehicle (hereafter
called Mobile-pack), a medium-grade wheel-based
system: Purdue wheel-based mobile mapping system–
high accuracy (PWMMS-HA), and a high-grade wheel-
based system: Purdue wheel-based mobile mapping
system—ultra-high accuracy (PWMMS-UHA). All the
six MLMS units are shown in Figure 3.1.

The UAV (shown in Figure 3.1a) payload consists
of a Velodyne VLP-32C LiDAR and a Sony 43.6 MP
full-frame camera with a 35 mm lens. The LiDAR and
the camera are directly georeferenced by an Applanix
APX15v3 position and orientation unit integrating
global navigation satellite systems/inertial navigation
systems (GNSS/INS). More specifically, the position
and orientation information of the two sensors at any
point during surveys are directly obtained by the
GNSS/INS unit. The UGV (shown in Figure 3.1b)

consists of a Velodyne VLP-16 Hi-Res 16 beam LiDAR
unit and a Sony 36.3 MP full-frame camera with an 8
mm lens. The LiDAR data and images from the camera
are georeferenced by a NovAtel SPAN-IGM GNSS/
INS unit. The Backpack system is comprised of a VLP-
16 Hi-Res LiDAR and a Sony 42.4 MP full-frame
camera with a 35 mm lens. These two sensors are geo-
referenced by a NovAtel SPAN-CPT GNSS/INS unit.
This Backpack system has the versatility of either being
worn by a survey crew, as depicted in Figure 3.1c, for
off-road data acquisition, or be mounted on a carrier
vehicle for scanning long corridors, as shown in
Figure 3.1d. The PWMMS-HA is equipped with four
LiDAR units: three Velodyne HDL-32E and one
Velodyne VLP-16 High-Res, three FLIR Grasshop-
per3 9.1 MP GigE color cameras with an 8 mm lens
(Figure 3.1e). All the sensors are georeferenced by an
Applanix POS LV 220 GNSS/INS unit. The PWMMS-
UHA, as shown in Figure 3.1f, carries two profiling
LiDAR units—a Riegl VUX 1HA and a Z+F Profiler
9012. There are also two rear-facing FLIR Flea2 Fire-
Wire color cameras with a 12 mm lens. These LiDAR
and RGB camera units are georeferenced by a NovAtel
ProPak6 GNSS receiver and ISA-100C near-naviga-
tion grade IMU. Table 3.1 lists the specifications of the
georeferencing (Applanix, n.d.a; n.d.b; Hexagon, n.d.a;
n.d.b; 2021) and LiDAR units (Riegl, n.d.; Velodyne,
n.d.a; n.d.b; n.d.c; Zoller + Frolich, n.d.) for each
MLMS including the approximate total cost of the
equipment.

The RGB cameras on each MLMS are triggered at
a periodic interval through different instrumentation
setups. The three FLIR cameras onboard PWMMS-HA
are triggered using pulse output from POS LV as an
input to the cameras. For all other MLMS units,
a separate hardware circuit is utilized that triggers
their cameras at a fixed time interval (once every few
seconds). Image capture events are logged by the GNSS/
INS unit of each platform. Using GNSS for event
logging ensures that the time of capture is accurately
tagged using the precise GNSS receiver clock.

While the specifications of a LiDAR sensor are
critical in determining the resulting point cloud density,
sensor orientation and sensor-to-object distance play
an important role in defining the most relevant field
of view which provides the highest number of beam
returns from a given region of interest (ROI). The UAV
system is built in a way that the rotation axis of the
LiDAR unit is approximately parallel to the flying
direction. The UGV LiDAR unit, owing to its tilt and
proximity to the ground, produces a highly dense point
cloud, but the useful scan area is limited to a very small
field of view. The Backpack system has a similar
orientation of its LiDAR unit as that of the UGV;
however, the unit, being positioned at least a meter
above the ground, enables scanning a large surface area
for the same angle subtended at the LiDAR unit as
that of the UGV. The LiDAR sensors onboard
the PWMMS-HA have only a slight tilt towards
the ground, meaning each sensor covers a very large
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ground surface area. One would expect the resulting
point cloud from PWMMS-HA to be sparse. On the
contrary, as an advantage of having multiple sensors on
the platform, any sparsity of points due to the large
ground scan area is compensated by the additional
LiDAR units through accurate system calibration. In
case of the PWMMS-UHA, which is outfitted with two
high-precision profiler LiDAR units, the sensors have
similar tilts as the UGV. Additionally, the high pulse
repetition rates of the LiDAR units allow for obtaining
a high-density point cloud of the ground surface. Thus,
selecting a suitable MLMS with an optimal sensor
configuration is the key to deriving high density point
cloud for a detailed mapping of roadside ditches from
the acquired LiDAR data.

3.2 System Calibration of Different MLMS units

The raw data collected by various MLMS units
includes LiDAR range and intensity measurements,

camera images, and georeferencing information from
the GNSS/INS unit. In order to reconstruct accurately
geo-referenced and well-registered point cloud as well
as to integrate the information from cameras, a system
calibration procedure that estimates the relative posi-
tion and orientation (hereafter, denoted as mounting
parameters) between the LiDAR and imaging sensors
and the GNSS/INS unit is required. The mounting
parameters in this study are accurately estimated using
the in-situ calibration procedure proposed by Ravi
et al. (2018). This procedure estimates the mounting
parameters by minimizing discrepancies among con-
jugate points, linear features, and/or planar features
obtained from different LiDAR units and cameras in
different drive-runs/flight lines. Table 3.2 shows the
range of standard deviation of estimated mounting
parameters for all LiDAR units/cameras onboard each
MLMS from the system calibration. The lever arm
component along the Z direction (�Z) was determined
by incorporating RTK-GNSS survey measurements in

Figure 3.1 Continued.
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Figure 3.1 MLMS units used in this study: (a) unmanned aerial vehicle (UAV), (b) unmanned ground vehicle (UGV),
(c) Backpack, (d) Mobile-pack, (e) medium-grade system (PWMMS-HA), and (f) high-grade system (PWMMS-UHA). All of
these platforms are non-commercial systems designed and integrated by the research group.

the calibration model as vertical control. The accuracy
of the final ground coordinates for each MLMS at a
specified sensor-to-object distance was evaluated using
the LiDAR Error Propagation calculator developed by
Habib et al. (2006). The results, as shown in Table 3.3,
indicate that an accuracy of under 5–6 cm is achievable
from all systems.

Once the mounting parameters are estimated accu-
rately, the LiDAR point clouds and images captured by
individual sensors onboard the systems can be directly
georeferenced to a common reference frame. More
specifically, using the estimated mounting parameters,
together with the GNSS/INS trajectory, one can

(1) reconstruct a georeferenced LiDAR point cloud,
and (2) obtain the position and orientation of the
camera in a global mapping frame whenever an image is
captured. This capability allows for a forward and
backward projection between the reconstructed point
cloud and camera imagery. Thus, an ROI in the point
cloud can be identified and projected to images
containing those points. Such image-LiDAR integra-
tion facilitates qualitative reporting of ditch mapping/
characterization, i.e., the ditches can be visualized and
reported in 3D point clouds as well as 2D images even
though they are mainly detected and mapped in 3D
space. The image-based visualization is useful for
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effective mitigation of detected problems during the
ditch mapping (e.g., deviation from the design profile of
the ditch, improper grade along the ditch, and debris
within the ditch).

3.3 Dataset Description

A total of ten datasets were collected by different
mobile LiDAR mapping systems over three study sites.
Table 3.4 lists the drive-run/flight configuration of each
dataset. The performance of ground-based MLMS
units for mapping roadside ditches is assessed against
one of the well-studied aerial data acquisition methods,
UAV, using datasets A-1, A-2, and A-3. Datasets B-1
to B-5 are used to evaluate the comparative perfor-
mance between different ground-based MLMS units
and identify the most practical ditch mapping solution.
Finally, the proposed ditch line characterization strate-
gies are tested using datasets C-1 and C-2.

Datasets A-1, A-2, and A-3 were collected over a
county road, CR500N, in Indiana, USA. An aerial
photo of the study site is presented in Figure 3.2a, and
an image capturing location PA1 taken by the front left
Grasshopper camera on the PWMMS-HA is shown in
Figure 3.2b. This study site is located at a densely
vegetated hill, as can be seen from the aerial photo. The
average slope along the road is 6% (approximately 20 m
elevation change over a planimetric distance of 350 m).
The roadside ditches are present on both sides of the
road and covered by short vegetation. At the time of
this data acquisition, the indicated study site was being
reworked to change the S-curve of the road to a simple
curve with the goal of improving traffic safety. Cut trees

Figure 3.2 Study site at CR500N: (a) the surveyed area and
cross-section locations (aerial photo adapted from Google,
2018a) and (b) image of the surveyed area at location PA1
captured by one of the cameras onboard the PWMMS-HA.
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TABLE 3.2
The range of standard deviation of the estimated system mounting parameters for all the LiDAR units/cameras onboard each MLMS

LiDAR Units

UAV UGV Backpack/Mobile-Pack PWMMS-HA PWMMS-UHA

Lever Arm

Boresight

¡1.2–1.5 cm

¡0.02u–0.04u
¡1.0–1.3 cm

¡0.02u–0.08u
¡0.5–0.8 cm

¡0.02u–0.03u
¡0.8–1.8 cm

¡0.02u–0.05u
¡0.5–0.6 cm

¡0.01u–0.02u

Camera Units

UAV UGV Backpack/Mobile-Pack PWMMS-HA PWMMS-UHA

Lever Arm

Boresight

¡2.7–5.4 cm

¡0.03u–0.04u
¡3.7–6.5 cm

¡0.12u–0.14u
¡3.0–4.9 cm

¡0.08u–0.12u
¡3.8–6.6 cm

¡0.07u–0.14u
¡3.1–6.0 cm

¡0.06u–0.11u

TABLE 3.3
Expected accuracy of the ground coordinates evaluated using the LiDAR Error Propagation calculator (Habib et al., 2006)

UAV UGV Backpack/Mobile-Pack PWMMS-HA PWMMS-UHA

Sensor-to-Object Distance 50 m 5 m 5 m 30 m 30 m

Accuracy ¡5–6 cm ¡2–4 cm ¡2–3 cm ¡2–3 cm ¡2 cm

TABLE 3.4
Specifications of acquired datasets by the different MLMS units for this study

ID Location

Data

Collection Date System

Number of

Tracks

Average Speed

(mph)

Data Acquisition

Time (min)

Length

(mile)

A-1 CR500N 2021/03/13 UAV 4 8 12 0.4

A-2 2021/03/26 PWMMS-HA 2 29 4 0.5

A-3 2021/03/26 Mobile-pack 2 20 4 0.5

B-1 McCormick Rd.

and Cherry Ln.

2020/12/22 PWMMS-HA 2 20 10 1.6

B-2 2020/12/22 PWMMS-UHA 2 20 10 1.6

B-3 2020/12/22 UGV 4 4 30 0.5

B-4 2020/12/22 Backpack 4 3 32 0.5

B-5 2021/03/26 Mobile-pack 2 26 4 1.1

C-1 SR 28 2021/03/26 PWMMS-HA 2 47 37 13.2

C-2 2021/03/26 Mobile-pack 2 50 (WB) 30 (EB) 35 13.2

for the road rework can be seen on the right side in
Figure 3.2b. The PWMMS-HA and Mobile-pack drove
along the road in both directions. The UAV was flown
in four tracks over the study site with a flying height of
50 m above ground and a lateral distance of 14 m
between neighboring flight lines.

Datasets B-1 to B-5 were collected at the intersection
of McCormick Road and Cherry Lane adjacent to
Purdue University’s campus in West Lafayette, Indiana,
USA. The roadside ditches are present on both sides of
the road and are covered by short vegetation. The width
of these ditches ranges from 2 m to 10 m, and their depth
ranges from 0.2 m to 1 m. Figure 3.3 shows an aerial
photo of the study site and an image capturing location
PB3 taken by the front left Grasshopper camera on the
PWMMS-HA. To evaluate the absolute accuracy of the
LiDAR-based mapping of the ditches, an RTK-GNSS

survey was carried out at four cross-section locations—
PB1, PB2, PB3, and PB4 in Figure 3.3a. For each profile,
the team surveyed few points on the road and 20 to 25
points across the ditch. The team also took few measure-
ments on the sidewalk that was adjacent to the road in
profiles PB3 and PB4. The PWMMS-HA, PWMMS-
UHA, UGV, and Backpack data were acquired on the
same date when the RTK-GNSS survey was conducted.
The PWMMS-HA and PWMMS-UHA covered all
routes in both directions, so both datasets have two
tracks. In contrast to the wheel-based systems, the UGV
and Backpack acquired data along the ditches on both
sides of the road in forward and backward directions,
resulting in four tracks over the surveyed area. The
Mobile-pack data was acquired at a later date (approxi-
mately three months from the RTK-GNSS and other
MLMS units surveys, refer to Table 3.4). The system
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Figure 3.3 Study site at McCormick Rd: (a) surveyed area and cross-section locations (aerial photo adapted from Google,
2018b), and (b) image of the surveyed area at location PB3 captured by one of the cameras onboard the PWMMS-HA.

Figure 3.4 Study site at SR 28: (a) the one-mile-long region of interest and cross-section locations (aerial photo adapted from
Google, 2018c) and (b) image of the surveyed area at location PC1 captured by one of the cameras onboard the PWMMS-HA.

drove along Cherry Lane and the south part of
McCormick Road in both directions. Location PB1
was not covered in this survey.

Datasets C-1 and C-2 were collected over a state
road, SR 28, in Indiana, USA with a total length of
approximately 13 miles. The roadside ditches are
present on both sides of the road and are covered by
short vegetation and shrubs. A one-mile-long segment
was selected as the region of interest. Figure 3.4a shows
an aerial photo of the ROI where PC1, PC2, PC3, and
PC4 are four cross-section locations that are used in the
ditch line characterization analysis (as will be discussed
later in Section 5.3). Figure 3.4b is an image capturing
location PC1 taken by the front left Grasshopper

camera on the PWMMS-HA. As can be seen in the
image, some parts of the ditches and adjacent agri-
cultural fields were flooded. Also seen is some cut-
down trees for an upcoming road maintenance project.
Both PWMMS-HA and Mobile-pack drove west-
bound and eastbound on SR 28, and therefore both
datasets have two tracks. The PWMMS-HA drove at
an average speed of 47 mph in both directions. The
Mobile-pack drove at a higher speed (50 mph) in
westbound and a lower speed (30 mph) in eastbound.
This drive-run configuration was designed for investi-
gating the impact of driving speed on point density as
well as to evaluate the system’s ability of mapping
roadside ditches.
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4. METHODOLOGY FOR DITCH MAPPING AND
CHARACTERIZATION

The proposed framework for roadside ditch mapping
is illustrated in Figure 4.1. The main steps include: (1)
ground filtering; (2) point cloud vertical accuracy
assessment; (3) cross-sectional profile extraction, visua-
lization, and slope evaluation; (4) drainage network and
longitudinal profile extraction; and (5) potential
flooded region detection and visualization.

4.1 Ground Filtering and Digital Terrain Model (DTM)
Generation

Ground filtering algorithms separate bare earth
points (which represent the terrain) from above-ground
points and subsequently, generate a rasterized digital
terrain model. The bare earth point cloud is a subset of
the original point cloud, and thus retains the precision
of the latter. The DTM, on the other hand, is a rasteri-
zed dataset with decreased precision, which serves as an
input for hydrological analyses. In this study, the
ground filtering technique is adapted from the cloth
simulation algorithm proposed by Zhang et al. (2016).
The conceptual basis of the cloth simulation approach
can be summarized in four steps: (1) turn the point
cloud upside down, (2) define a cloth (consisting of
particles and their interconnections) with some rigid-
ness, and place it above the point cloud, (3) let the cloth
drop under the influence of gravity to designate the
final shape of the cloth as the DTM, and (4) use the
DTM to filter ground from above-ground points. In
the original approach introduced by Zhang et al.
(2016), the rigidness of the cloth is constant, and its
value is selected based on the properties of the terrain
(i.e., whether the terrain has a gentle slope, terraced
slope, or steep slope). This approach was developed for

airborne LiDAR, and it does not consider large
variation in point density, which is not the case for
mobile LiDAR data where the point density decreases
as we move away from the road surface. The modified
approach deals with this problem by redefining the
rigidness of each particle on the cloth based on the
point density of an initial bare earth point cloud. The
approach consists of three steps: (1) using the original
approach to extract the bare earth point cloud, (2)
redefining the rigidness of the cloth based on the point
density of the bare earth point cloud, and (3) applying
the cloth simulation again to obtain a refined bare earth
point cloud and the final DTM.

An example of a DTM generated based on the origi-
nal and modified approaches is shown in Figure 4.2. In
the area shown in Figure 4.2a, the point cloud is dense
along the road surface but is sparse within the grass
areas, especially on the right side of the road where
there are no points in some areas. The original app-
roach leads to artifacts in low point density areas as the
cloth keeps dropping without being stopped by the
ground. By manipulating the rigidness of the cloth
depending on the point density within the neighbor-
hood, the modified approach is able to generate a
reasonable representation of the terrain, even if there
are gaps in the point cloud. The difference between the
resultant DTM from the two approaches is visuali-
zed by generating an elevation difference map, as in
Figure 4.2a. Areas with low point density are observed
to be largely impacted by the difference in the two
approaches with artifacts extending to an elevation
difference at the range of 1.5 m. The side view of a
cross-sectional profile across the road is illustrated in
Figure 4.2b to highlight the obvious difference in the
DTM portion on the right side due to sparse points. In
general, the derived DTM from the modified approach
traces the terrain well (see Figure 4.2c).

Figure 4.1 Main steps of the proposed framework for point cloud quality assessment and ditch mapping/characterization.
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Figure 4.2 Comparison between the original and modified approaches for DTM generation: (a) point cloud, DTM based on
original and modified approaches and elevation difference between the two DTMs, (b) side view of profile P1 showing point cloud,
DTM based on original and modified approaches, and (c) side view of profile P1 showing only DTM based on the modified
approach.

4.2 Point Cloud Quality Assessment

Quality assessment involves evaluating the (1) rela-
tive accuracy: alignment between point clouds from
different MLMS units, and (2) absolute accuracy:
agreement between the point cloud and independently
measured ground control points.

The assessment of relative accuracy between two
point clouds quantifies the degree of consistency among
conjugate points/features. Applying the approach
proposed by Lin and Habib (2021), the net discrepancy
between two point clouds is estimated using planar
features—terrain patches—extracted from the acquired
data. Starting with two bare earth point clouds from
different MLMS units, one is selected as a reference and
another as a source. The bare earth point clouds are
then segmented into patches with a pre-determined size.
For each patch, a principal component analysis (PCA)
is performed to test its planarity, as proposed by Habib
and Lin (2016). Only planar patches are included in
subsequent analysis. An iterative plane fitting is then
carried out to remove potential outlier points and
estimate the parameters of the plane. A patch is rejected
from the accuracy assessment if: (1) the plane-fitting
Root Mean Square Error (RMSE) exceeds a user-defi-
ned threshold, or (2) the remaining points after iterative
plane fitting fails to reach another user-defined thresh-
old. Next, the center of the reference plane (ai) and its

Figure 4.3 Illustration of the discrepancy estimation using
conjugate terrain patches.

projection on the source plane (bi) are determined. The
discrepancy between conjugate patches, [dx_obs dy_obs

dz_obs]
T can therefore be quantified by the coordinate

difference between ai and bi (as depicted in Figure 4.3).

The net discrepancy between two point clouds is
estimated using a least squares adjustment (LSA). For
feature-based pairing, each planar feature provides
discrepancy information only along the normal direc-
tion to the plane. The inability to estimate the dis-
crepancy along planar features is considered within the
LSA model by incorporating a modified weight matrix
(Ravi, in press; Renaudin et al., 2011). The modified
weight matrix is derived such that it retains only the
component of the discrepancy along the normal
direction to the planar feature in question. The LSA
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model with modified weight matrix estimates the X, Y,
and Z shifts between two point clouds using the
mathematical model in Equation 4.1). The discrepan-
cies between conjugate terrain patches ([dx_obs dy_obs

d T
z_obs] ) are direct observations of the net discrepancy

between two point clouds ([dx dy dz]
T). The random

noise [ex ey ez]
T has a mean of zero and variance-

covariance matrix of s2 0 2
0Pxyz

þ, with s0 is the a-priori
0

variance factor and Pxyz is the modified weight matrix.

The plus sign denotes the Moore–Penrose pseudoin-
0

verse since Pxyz is rank-deficient and its inverse does not

exist. One should note that although the least squares
adjustment evaluates the discrepancies along the X,
Y, and Z directions, the reliability of these estimates
depends on the variation in the orientation/slope/aspect
within the region of interest. For transportation corri-
dors, the terrain patches are mostly flat or have a mild
slope, and thus provide discrepancy information mainly
along the vertical direction. Therefore, only the vertical
discrepancy estimation is reported.

dx obs

dy obs

dz obs

64 75~

dx

dy

dz

64 75z

ex

ey

ez

64 75, e* 0,s2
0P ’xyz

þ� �
ðEq: 4:1Þ

2 3 2 3 2 3

The absolute accuracy is assessed against manually
collected RTK-GNSS measurements (hereafter, RTK
points). To investigate the LiDAR mapping accuracy
over different surfaces, we manually classify the
LiDAR/RTK points into two classes: solid surface
(including road and sidewalk) and vegetated area. The
elevation difference between each RTK point and its
closest LiDAR point is calculated and the RMSE and
interquartile range are reported for each class.

4.3 Cross-Sectional Profile Extraction, Visualization,
and Slope Evaluation

A cross-sectional profile with a given length and
width can be extracted from the point cloud, bare earth
point cloud, and/or DTM at any location. The orien-
tation of the profile should be perpendicular to the
direction of the road, which can be derived using the
vehicle trajectory information. Once the profile is
extracted, the slope along the profile is evaluated using
the bare earth points, a sample result is shown in
Figure 4.4. The profile and slope information extracted
from LiDAR data can then be compared to the design/
standard values (McGee et al., 2009) to detect problems

such as improper grade. Furthermore, using the trajec-
tory information, it is possible to crop and analyze a
series of cross-sectional profiles automatically based on
a user-defined interval.

The key strength of mobile mapping systems lies in
the integration of information acquired from different
sensors onboard the system. Since all the sensors’ data
is georeferenced to a common reference frame, multi-
sensor/multi-date datasets can be effectively fused. That
is, the images capturing each profile can be identified,
and the profile can be back-projected to the images.
Consequently, the ditches can be visualized in both 3D
point clouds and 2D images even though they are
mainly detected and mapped in 3D space. The image-
based visualization is useful for effective mitigation of
detected problems during ditch mapping (e.g., deviation
from the design profile of the ditch, improper grade,
and/or debris within the ditch).

4.4 Drainage Network and Longitudinal Profile
Extraction

Conducting a drainage network analysis is critical
because it signifies the location of valley points along the
ditches and it also identifies potential drainage issues.
The drainage network through which water travels can
be identified by analyzing the movement of surface
water—that is, calculating the flow direction and flow
accumulation for each DTM cell (Jenson & Domingue,
1988). When enough water flows through a cell, the
location is considered to have a stream passing through
it. Therefore, the drainage network can be extracted by
applying a user-defined threshold on the flow accumu-
lation map. The major streams are expected to be
aligned with the ‘‘valley’’ of the ditches (Figure 4.5).
Combining the resulting drainage network with other
information derived from MLMS can facilitate long-
term road and pavement management. For instance, by
overlapping the drainage network with detected lane
markings (which specifies the boundaries of the road) as
well as detected potholes, one can identify potential
road flooding areas if there is high flow accumulation
on the road. The drainage network can also be used to
investigate the possibility of correlating ditch adequacy
to pavement performance, for example, pavement
distress caused by drainage problems.

A longitudinal profile is the one along the ‘‘valley’’ of
a ditch; that is, it aligns with the major stream in the
drainage network. Figure 4.6a shows an example of the

Figure 4.4 An example of cross-sectional profile colored by slope.
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Figure 4.5 Sample drainage network of a roadside ditch showing a major stream and its tributaries.

Figure 4.6 Longitudinal profile extraction: (a) drainage network, (b) drainage network after removing tributaries, and (c)
streamlines after outlier removal.

Figure 4.7 An example of a longitudinal profile together with the detected lane marking.

drainage network extracted from MLMS data, from
which some tributaries and discontinuities along the
major streams can be observed. To identify the location
of the longitudinal profile, we need to remove tribu-
taries and connect major streams. Since our focus is
the ditches adjacent to a transportation corridor, the
drainage network is expected to be a long, linear feature.
Line fitting is performed to estimate the line parameters,
which, in turn, are used to find the direction of the major
stream. The drainage network is then rotated so that the
direction of the major stream is along the X-direction.
The tributaries are removed based on the assumption
that within a small range of the X-coordinate of the
rotated drainage network, the elevation of the major
stream is lower than the elevation of the tributaries.
A sample result is shown in Figure 4.6b. Next, we divide
the streamlines into segments and apply line fitting and
outlier removal using a random sample consensus
(RANSAC) strategy (Fischler & Bolles, 1981), depicted
in Figure 4.6c, assuming that the ditch line is app-
roximately a straight line within each segment. The

longitudinal profile is extracted based on the location
of the inlier streamlines and best-fitted lines. Figure 4.7
illustrates a sample longitudinal profile, together with
the detected lane marking that signifies the elevation
of the road surface. The longitudinal profile of a ditch
is the primary information for analyzing flood risk.
Sudden elevation changes along the longitudinal
profile can serve as an indication of potential problems
including improper grade along the ditch or debris
within the ditch. This can be further confirmed by
inspecting the images that capture the area.

4.5 Potential Flooded Region Detection and
Visualization

Standing water is an indication of drainage issues/
high flooding risk. Therefore, the ability to identify
such areas is critical for prioritizing and planning
maintenance. The proposed flooded region detection
approach is based on the hypothesis that LiDAR has
zero return over water bodies. Potential flooded regions
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Figure 4.8 Water detection approach: (a) binary point density image, (b) image after applying median filter, (c) boundary tracing
result, and (d) detected water areas after removing small regions.

Figure 4.9 An example of a potential flooded region visualized in (a) 3D point cloud and (b) 2D image.

can be identified by detecting areas where the LiDAR
points are absent. The approach has four steps, as
illustrated in Figure 4.8. First, a binary point density
image over the region of interest is generated with a
user-defined cell size where 0 means there are at least
one point in the cell and 1 means there is no point in the
cell. A median filter is then applied to reduce the noise
caused by irregular point distribution. Next, the
boundary between the black and white cells is traced
using an OpenCV implementation of the algorithm
proposed by Suzuki and Be (1985). An ROI is reported
if its area is larger than a user-defined threshold. With
the ability of 2D–3D cross-visualization, the reported
ROIs are visualized both in 3D point cloud and 2D
images. A sample result is shown in Figure 4.9. The
image-based visualization helps to identify false detec-
tion, and it also helps to associate any environmental
factors that lead to flooding.

The potential flooded region detection results are
compared against manually established ground truth.
The manual flooded region identification is carried out
by examining the point cloud and images captured by
the PWMMS-HA over the ROI and manually marking

all the flooded regions. To evaluate the performance of
the proposed potential flooded region detection strat-
egy, precision and recall—as represented by Equations
4.2 and 4.3 where TP, FP, and FN are the true posi-
tives, false positives, and false negatives, respectively—
are used. Precision signifies how accurate the positive
predictions are whereas recall indicates how well the
true flooded regions are identified.

Precision~
TP

TPzFP
ðEq: 4:2Þ

Recall~
TP

TPzFN
ðEq: 4:3Þ

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present three experimental results.
The first experiment compares the ground-based
systems against UAV in terms of the ability of mapping
roadside ditches. The second experiment evaluates the
comparative performance of different grades of MLMS
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and identifies the most feasible technique for ditch
mapping. The third experiment tests the proposed ditch
line characterization approach using a one-mile-seg-
ment along a state road.

5.1 Comparison Between Ground-Based and UAV
Systems for Mapping Roadside Ditches

In this section, the capability of ground-based
MLMS for monitoring roadside ditches is assessed
against a UAV-based MLMS. Datasets A-1 (captured
by the UAV), A-2 (captured by the PWMMS-HA), and
A-3 (captured by the Mobile-pack) were used for this
analysis. The ground-based MLMS mapping products
were compared against those from the UAV in terms of
the spatial coverage, point density, and relative vertical
accuracy between point clouds.

The point cloud and bare earth point cloud were first
generated from each dataset. Figure 5.1a shows the
point clouds from different MLMS units together with
the trajectory. While the ground-based MLMS units
can only drive on road and therefore the point cloud
coverage is limited to areas adjacent to the road,
theoretically, there is no such limitation on the flight
movement for the UAV. For the datasets used in the
current analysis, the UAV was able to maneuver over a
large area and obtain a wide spatial coverage. The bare
earth point clouds were extracted using the modified
cloth simulation approach and the results are depicted
in Figure 5.1b. A cross-sectional profile at location PA1
was extracted from the original and bare earth point
clouds. The profile side view, as shown in Figure 5.2,
demonstrates that the LiDAR points were able to pene-
trate the vegetation and capture the terrain. Compared

to the UAV, the ground-based systems are more prone
to occlusions caused by terrain features. Having said
that, all three systems show complete coverage over the
road surface and ditches, which are the focus of this
study.

The point density map for each dataset was derived
based on the bare earth point cloud since the latter is
the one used for ditch line characterization. Figure 5.3
shows the point density maps along with the trajectory
for the UAV, PWMMS-HA, and Mobile-pack. The
statistics of point density, including the 25th percentile,
median, and 75th percentile in the surveyed area, are
reported in Table 5.1. The ground-based systems pro-
duced much higher point density as compared to the
UAV due to the short sensor-to-object distance.
PWMMS-HA had the highest point density since its
point cloud came from four LiDAR units. Looking into
the spatial pattern in Figure 5.3, the point density from
the ground-based systems is high near the trajectory,
and it decreases drastically as the distance from the
trajectory increases. Such spatial pattern is mainly
related to the varying sensor-to-object distance and
occlusion caused by trees. For the UAV, in contrast,
the sensor-to-object distance (i.e., flying height) was
almost constant throughout the data collection, and
thus the variation in point density across the surveyed
area is much smaller.

The relative vertical discrepancies between point
clouds from different systems were estimated using the
terrain patches extracted from the bare earth point
clouds. The size of the terrain patches was set to 0.5 m 6
0.5 m. The square root of a-posteriori variance
factor (s0) and the estimated vertical discrepancy (dz)
between the point clouds from different MLMS units

b

Figure 5.1 MLMS mapping products showing the (a) point cloud and trajectory and (b) bare earth point cloud from UAV,
PWMMS-HA, and Mobile-pack.
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Figure 5.2 Side view of a cross-sectional profile at location PA1 showing the original and bare earth point clouds from (a) UAV,
(b) PWMMS-HA, and (c) Mobile-pack.

Figure 5.3 Point density of the bare earth point cloud along with the trajectory from UAV, PWMMS-HA, and Mobile-pack.

are reported in Table 5.2. The former reflects the noise
level of the point clouds, and the latter signifies the
overall net discrepancy between the point clouds in
question. As mentioned earlier, the ability to estimate
the discrepancies along the X, Y, and Z directions relies

on the variation in the orientation/slope/aspect within
the region of interest. In this study site, the relatively
horizontal terrain cannot provide sufficient information
for estimating planimetric discrepancies. Therefore,
only the vertical discrepancy estimation is reported.
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TABLE 5.1
Statistics of the point density in the surveyed area

Dataset

Point Density (points/m2)

25th Percentile Median 75th Percentile

A-1 (UAV)

A-2 (PWMMS-HA)

A-3 (Mobile-pack)

200

500

400

500

1,800

1,200

1,000

6,100

3,800

TABLE 5.2
Estimated vertical discrepancy and square root of a-posteriori variance using A-1 (UAV), A-2 (PWMMS-HA), and A-3 (Mobile-pack)
datasets

Reference Source Number of Observations bs0 (m)

dz (m)

Parameter Std. Dev.

UAV PWMMS-HA 111,973 0.083 0.028 2.61561024

UAV Mobile-pack 55,742 0.064 -0.008 2.86461024

PWMMS-HA Mobile-pack 67,133 0.043 -0.029 1.67161024

According to Table 5.2, the square root of a-posteriori
variance factor suggests a noise level of ¡4–8 cm. The
discrepancy estimation shows that all datasets are
in agreement within a ¡3 cm range along the vertical
direction.

The discussion above reveals that all the MLMS
units can achieve similar mapping accuracy. The advan-
tage of UAV is that it can maneuver over areas that are
difficult to reach by ground-based vehicles. However,
UAV surveys can only cover a relatively small area due
to the limited flying speed, battery life, and maintaining
line-of-sight regulations. Thus, it is not a practical solu-
tion for mapping long, linear transportation corridors.
Field surveys with ground-based MLMS units, on the
other hand, are more efficient since the vehicles can
travel at a higher speed and cover a longer extent. As
long as the region of interest is limited to areas adjacent
to the road, MLMS data can have full coverage with a
decent point density, which is adequate for monitoring
roadside ditches.

5.2 Comparative Performance of Different Ground-
Based MLMS Units

In this experiment, the ability of different ground-
based MLMS units for mapping roadside ditches was
evaluated. Datasets B-1 (captured by the PWMMS-
HA), B-2 (captured by the PWMMS-UHA), B-3
(captured by the UGV), B-4 (captured by the Back-
pack), and B-5 (captured by the Mobile-pack) were
used in this analysis. The comparative performance of
different MLMS units was assessed in terms of spatial
coverage, relative vertical accuracy, and absolute
vertical accuracy.

Upon reconstructing the point cloud, the bare earth
point cloud was extracted, and the DTM was generated
using the modified cloth simulation approach for each
dataset. Cross-sectional profiles at locations PB1, PB2,

PB3, and PB4 were extracted from the point cloud, bare
earth point cloud, and DTM with a width of 1 m.
Figure 5.4 shows the cross-sectional profiles of the bare
earth point clouds from different MLMS units at
location PB3. The spatial coverage of point clouds from
different systems was evaluated qualitatively. As can
be observed in Figure 5.4, with sufficient number of
tracks, each of the mobile mapping systems demon-
strates a complete coverage of the ditch. The UGV
point cloud, despite having full coverage over the
ditches, has limited coverage of the road and areas that
are away from the tracks. For the UGV, the location of
tracks with respect to the ditch plays a crucial role.
Since the UGV tends to be very close to the ground, it is
prone to occlusions caused by surrounding vegetation
and terrain. The Mobile-pack has the least number of
points because it has only one LiDAR unit covering
two tracks over the region of interest, and the vehicle to
which the sensor assembly was mounted traveled at
a speed similar to those of the PWMMS-HA and
PWMMS-UHA. One thing to note is that the point
density of Mobile-pack drops rapidly when moving
away from the trajectory. This is attributed to the
mounting orientation of its LiDAR sensor whose field
of view was limited to focus on objects in short range
(refer to Figure 3.1d and the discussion in Section 3.1).

The relative vertical accuracy between point clouds
from different MLMS units was evaluated using planar
features—terrain patches—extracted from the bare
earth point clouds over the surveyed area. The size of
the terrain patches was set to 0.5 m 6 0.5 m. The
PWMMS-HA dataset was selected as a reference
because it had the largest spatial coverage. Table 5.3
reports the square root of a-posteriori variance factor
(sb0) and estimated vertical discrepancy (dz) between the
point clouds from different MLMS units. The square
root of a-posteriori variance factor suggests a noise
level of ¡1–2 cm. The point clouds from different
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Figure 5.4 Cross-sectional profiles at location PB3 from different systems showing the side view, top view, and the platform
tracks (black dashed lines).

TABLE 5.3
Estimated vertical discrepancy and square root of a-posteriori variance using B-1 (PWMMS-HA), B-2 (PWMMS-UHA), B-3 (UGV),
B-4 (Backpack), and B-5 (Mobile-pack) datasets

Reference Source Number of Observations bs0 (m)

dz (m)

Parameter Std. Dev.

PWMMS-HA

PWMMS-HA

PWMMS-HA

PWMMS-HA

PWMMS-UHA

UGV

Backpack

Mobile-pack

13,610

4,737

12,480

11,539

0.010

0.021

0.012

0.018

-0.013

0.007

-0.027

-0.019

8.71161025

3.38561024

1.13761024

1.75061024

MLMS units exhibit a good degree of agreement with
an overall precision of ¡1–3 cm.

The absolute accuracy of the point cloud from
different MLMS units was assessed against the RTK-
GNSS survey. Figure 5.5 shows the side view of the
RTK points together with the bare earth point cloud
and DTM from each MLMS at location PB3. Through
visual inspection, one can see that the DTMs trace the
terrain well and are in good agreement with the RTK
points along the vertical direction. As mentioned in
Section 4.2, the LiDAR/RTK points are classified into
two classes: solid surface (including road and sidewalk)
and vegetated area. The elevation difference between
each RTK point and its closest LiDAR point is calcu-
lated, and the interquartile range is visualized, as shown

in Figure 5.6. The variance of elevation differences
is small for solid surfaces and large for vegetated
areas. The vertical accuracy was found to be ¡1 cm
(PWMMS-HA), ¡1 cm (PWMMS-UHA), ¡2 cm
(UGV), ¡1 cm (Backpack), and ¡2 cm (Mobile-pack)
for solid surfaces. For areas with vegetation, the verti-
cal accuracy was found to be ¡5 cm, ¡7 cm, ¡7 cm,
¡4 cm, and ¡7 cm for PWMMS-HA, PWMMS-
UHA, UGV, Backpack, and Mobile-pack, respectively.
The PWMMS-HA and Backpack, despite with cm-
level accuracy LiDAR units, had a slightly better
performance mainly attributed to better penetration
of vegetated surfaces due to their higher point den-
sity and larger beam divergence angle of the Velodyne
units.
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Figure 5.5 Cross-sectional profile at location PB3 showing the point cloud, DTM, and RTK-GNSS survey points.

Figure 5.6 Statistics of elevation difference between RTK-GNSS surveyed points and LiDAR points for (a) PWMMS-HA,
(b) PWMMS-UHA, (c) UGV, (d) Backpack, and (e) Mobile-pack with residual plots of range, 25th percentile, median, and
75th percentile.
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In this section, the spatial coverage, relative vertical
accuracy, and absolute vertical accuracy of point clouds
from five ground-based MLMS units were evaluated.
The results suggest that all the MLMS units can have a
complete coverage of the roadside ditches with suffi-
cient number of tracks. UGV is less desirable because it
is prone to occlusions. The ditch mapping accuracy of
different MLMS units was found to be similar. Systems
with high-end LiDAR units are not necessarily better
for mapping roadside ditches. In terms of field survey,
UGV, and Backpack are not practical for mapping
long extent of transportation corridors. Consequently,
the PWMMS-HA and Mobile-pack are practical
solutions for mapping roadside drainage ditches.

5.3 Ditch Line Characterization Using LiDAR Data

The previous section concluded that the PWMMS-
HA and Mobile-pack are more appropriate for captur-
ing roadside ditches. In this experiment, the proposed
ditch line characterization was tested using data acqui-
red by the two systems: datasets C-1 (collected by

PWMMS-HA) and C-2 (collected by Mobile-pack).
The results for the one-mile-long region of interest are
presented in this section, showing the following.

N Bare earth point cloud and corresponding DTM.

N Cross-sectional profiles in 3D and 2D, together with the

slope evaluation results.

N Drainage network and longitudinal profiles.

N Potentially flooded areas.

Upon reconstructing the point cloud, the bare earth
point cloud and DTM were generated for each MLMS
dataset using the modified cloth simulation approach,
and the corresponding point density map was derived
based on the bare earth point cloud. Figure 5.7 show
the point cloud (with trajectory), bare earth point
cloud, DTM, and point density map (with trajectory)
from PWMMS-HA and Mobile-pack over an area
covering location PC2 (see Figure 3.4). The bare earth
point cloud is a subset of the point cloud, and there-
fore a non-uniform distribution of the points can be
observed (see Figure 5.7b). The DTM is a rasterized
dataset and therefore has a uniform distribution within

Figure 5.7 LiDAR-based products from PWMMS-HA and Mobile-pack (showing an 80-meter- long area near location PC2):
(a) point cloud and trajectory, (b) bare earth point cloud, (c) digital terrain model (DTM), and (d) point density of the bare earth
point cloud and trajectory.
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the ROI. In Figure 5.7c, the DTM based on the modi-
fied cloth simulation approach captures the terrain even
though there are some gaps in the point cloud. Prior
to ditch line characterization, we inspected the point
density of the bare earth point cloud (Figure 5.7d) from
the two MLMS units. For both systems, the point
density decreased as the distance from the trajectory
increases. The degradation in point density for Mobile-
pack is much larger than that of the PWMMS-HA.
This is mainly related to the LiDAR unit orientation on
the platforms, as we noted earlier. As shown in Figure 5.7d,
PWMMS-HA has a decent point density up to 20 m to
the left and right of the road edge. Mobile-pack, on the
other hand, mainly covers an area within 6 m from

the road edge. In this study site, the roadside ditches
are typically present within 5 m from the road edge.
Therefore, both systems have full coverage over the
ditches for subsequent analysis. Another pattern that
can be observed from the Mobile-pack point density
map is the consistently lower point density along the
westbound as compared to the eastbound. This is a
result of the different driving speeds—50 mph in west-
bound and 30 mph in eastbound.

Cross-sectional profiles at locations PC1, PC2, PC3,
and PC4 were extracted and the slope along each profile
was calculated. Sample results showing profile PC2 are
visualized in Figure 5.8. The profile side view shown in
Figure 5.8a demonstrates that the LiDAR points were

Figure 5.8 Continued.
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Figure 5.8 Cross-sectional profile at location PC2: (a) point cloud and DTM profiles, (b) slope evaluation results together with
lane marking points, and (c) image with back-projected DTM and lane marking points. The lane marking points are extracted
from the point cloud using the approach proposed by Cheng et al. (2020).

Figure 5.9 Drainage network (in black) together with detected lane markings (in blue) superimposed on the bare earth point
cloud (colored by height).

able to penetrate the vegetation and capture points
below canopy. The PWMMS-HA produces denser
point cloud as compared to the Mobile-pack, yet the
DTMs derived from both systems are compatible. The
results indicate that the modified cloth simulation
approach can produce a reliable terrain model as long
as we have a sufficient number of points over the ROI.
The slope along the profile was calculated based on the
DTM points. Figure 5.8b depicts the profile PC2
colored by slope along with lane markings (detected
based on the approach proposed by Cheng et al. (2020)
that signify the road boundaries. The slope evaluation
results from the two MLMS units are consistent with
the standard values: 2% on driving lanes, 4% on
shoulder, and 6-by-1 gradation for ditch lines.
Figure 5.8c shows the back-projected DTM points on
an image captured by the front left camera onboard the
PWMMS-HA. The back-projected points coincide with
the corresponding features in the image, which verifies
the reliability of the system calibration.

The hydrological analyses including flow direction
and flow accumulation were performed using ESRI’s

ArcGIS (Maidment & Morehouse, 2002). Figure 5.9
depicts the drainage network map together with the
detected lane markings, using the bare earth point
cloud as a base map. As can be seen in the figure, the
drainage networks are aligned well with the ‘‘valley’’ of
the ditches. Subsequently, longitudinal profiles were
extracted from the drainage network by connecting
major streams and removing tributaries. Figure 5.10
visualizes the longitudinal profiles and the lane mark-
ings on the left and right side of the road (when driving
eastbound) where the green line, red line, and blue line
are the profile from PWMMS-HA, profile from
Mobile-pack, and detected lane marking, respectively.
The longitudinal profiles extracted from the PWMMS-
HA and Mobile-pack data are compatible as the green
and red lines are almost aligned with each other.
Moreover, the grade of the ditch line follows the grade
of the road, and the elevation of the ditch line is
consistently lower than the road centerline. Six cross-
sectional profiles at locations PC1 to PC6 were also
extracted and visualized in Figure 5.11, both in 3D and
2D. Profiles at locations PC1, PC2, PC3, and PC4 (see
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Figure 5.10 Longitudinal profiles from PWMMS-HA and Mobile-pack data together with the detected lane marking showing:
(a) the ditch and road edge line on the left and (b) the ditch and road edge line on the right when driving eastbound.

Figure 5.11 Continued.

Figure 5.11 Cross-sectional profiles at locations PC1 to PC6
with links (magenta dashed lines) connecting the 3D profiles
(side view and colored by slope) and the images from (a)
PWMMS-HA and (b) Mobile-pack.
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Figure 5.12 Sample potential flooded region detection results showing: (a) true positive, (b) false positive owing to occlusion by
trees and (c) false negative due to the presence of LiDAR return over water bodies. The ROI is shown both in point cloud and
image.

Figure 3.4) were extracted at an interval of 400 m.
Locations PC5 and PC6 show areas where the elevation
of the ditch line is very close to that of the road edge
line, as can be seen in Figure 5.10. Based on the 2D and
3D visualization shown in Figure 5.11, location PC5 is
an intersection and thus there is no ditch on the right
side of the road. Location PC6 shows an area where the
ditch on the left side of the road is very shallow and can
barely be seen.

The strength of MLMS units for characterizing
roadside ditches lies in the ability to (1) visualize the
profiles in 3D point clouds as well as 2D images, and
(2) incorporate other information derived from MLMS
data (for example, the detected lane markings). Such
capability leads to a thorough understanding of road-
side drainage conditions, which is the key to prioritizing
and planning maintenance. In addition, with the propo-
sed ditch line characterization approach, the relatively

low-cost system (Mobile-pack) can achieve similar
performance as compared to PWMMS-HA.

Finally, the proposed water detection approach was
tested on the C-1 and C-2 datasets. The area threshold
was set to 1 square meter; that is, any gap with an
area smaller than 1 square meter would more likely be
caused by occlusions or point cloud sparsity rather
than standing water. The detected flooded regions were
visualized and reported in 3D point clouds as well
as 2D images. Figure 5.12 shows examples of true
positive, false positive, and false negative. The detection
results were compared to the manually established
flooded locations and the performance was evaluated
and reported in Table 5.4. For both PWMMS-HA
and Mobile-pack, the computed precision score is low
because of the large number of false positives. The
Mobile-pack, however, has a high recall score, which
implies a low false negative rate.
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TABLE 5.4
Performance metrics—precision and recall—of the potential
flooded region detection evaluated using C-1 and C-2 datasets

PWMMS-HA Mobile-Pack

True Positive

False Positive

False Negative

Precision

Recall

7

5

6

58%

54%

12

26

1

32%

92%

Closer inspection of the detection results reveals that
in addition to water bodies, there are other factors that
can result in gaps in the bare earth point cloud. Occlu-
sions caused by vegetation (see Figure 5.12b) are the
main reason for false positives in this region of interest.
The false negatives, on the other hand, are solely due to
the existence of LiDAR returns from water bodies. As
shown in Table 5.4, false negatives are more common
in PWMMS-HA data than Mobile-pack data. One
possible reason could be the different orientations
of the LiDAR units. A LiDAR sensor mounted at
a certain angle is likely to collect some point returns
from shallow water bodies, however, such returns are
unreliable for range measurements (Worstell et al.,
2014). Based on the discussion above, it is a challenge
to reduce the false positive rate of water detection.
However, with the 2D–3D cross-visualization, an
operator can quickly go through the reported areas
and filter out those false positives. A high recall score is
really the key, and in this case, the Mobile-pack
outperforms the PWMMS-HA.

In this section, the performance of PWMMS-HA
and Mobile-pack for roadside ditch characterization
was evaluated. The advantage of PWMMS-HA is that
the point cloud has a more uniform density and a larger
coverage (up to 20 m from the road edge). That is, in
addition to the roadside ditches, the PWMMS-HA
point cloud can provide information on the areas
adjacent to the ditches. Such information is helpful for
investigating the causes of local flooding. Nevertheless,
both PWMMS-HA and Mobile-pack point clouds have
adequate spatial coverage for ditch line characteriza-
tion. The cross-sectional profiles, drainage network,
and longitudinal profiles extracted from both MLMS
units are shown to be compatible. For potential
flooded region detection, the Mobile-pack outperformed
PWMMS-HA for its high recall score since PWMMS-
HA tended to get LiDAR returns from water bodies.

6. CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

This report presented an evaluation and application
of mobile LiDAR in mapping roadside ditches for slope
and drainage analyses. The performance of different
grades of mobile LiDAR mapping systems was assessed
in terms of spatial coverage, relative vertical accuracy,
and absolute vertical accuracy. All the systems have
complete spatial coverage over the roadside ditches

with sufficient drive-runs/flight lines. Point clouds from
different MLMS units, including an unmanned aerial
vehicle, an unmanned ground vehicle, a portable Back-
pack system along with its vehicle-mounted version,
a medium-grade wheel-based system, and a high-grade
wheel-based system, are in agreement within a ¡3 cm
range along the vertical direction. The absolute accu-
racy of the point cloud from different MLMS units
was assessed against RTK-GNSS survey. For all the
MLMS units, the absolute vertical accuracy was found
to be ¡3 cm for solid surfaces and ¡7 cm for vegetated
areas. Field surveys with the wheel-based and vehicle-
mounted portable systems are more efficient and can be
scaled up to cover a large area that is impractical with
UAV, UGV, and Backpack surveys. To even a greater
extent, the low cost of the vehicle-mounted portable
system (as shown in Figure 6.1) in contrast to the more
sophisticated platforms, the medium-grade and high-
grade wheel-based systems, makes the former even more
justifiable for its application in ditch line mapping.

A framework for ditch line characterization, includ-
ing (1) cross-sectional profile extraction, visualization,
and slope evaluation, (2) drainage network and long-
itudinal profile extraction, and (3) potential flooded
region detection and visualization, is proposed and
tested using datasets acquired by the medium-grade
wheel-based and vehicle-mounted portable systems. An
existing ground filtering approach, cloth simulation,
is modified to handle variations in point density of the
mobile LiDAR data. Drainage analysis was conducted
to identify ditch lines and detect any potential drainage
issues. The cross-sectional/longitudinal profiles of the
ditch were automatically extracted from LiDAR data
and visualized both in 2D image and 3D point cloud.
The slope along the profile was calculated, reported,
and compared against standard values. Potential flooded
regions are identified and visualized both in point cloud
and images. A recall score of 54% and 92% was achieved
by the medium-grade wheel-based and vehicle-mounted
portable systems, respectively. These results, when com-
bined with other information derived from MLMS data,
lead to a thorough understanding of highway conditions,
which is helpful for planning highway maintenance. If
multi-date datasets are available, the proposed frame-
work can be implemented to identify changes in the 2D
location as well as the elevation/slope of the ditches. This
can signal the presence of sediments/debris in the ditch or
the erosion of the ditch line material.

Currently, our analysis is solely based on topo-
graphic data. In the future, it is possible to incorporate
weather and hydrological data, and perform flood
simulation to identify areas with flooding risk. Future
research will also focus on comparative analysis of
mapped ditch profiles and as-built drawings, which
would signify how the mapped profiles deviate from the
designed profiles. Furthermore, additional informa-
tion like intensity data will be utilized in the potential
flooded region detection to improve the performance.
Finally, for all the MLMS units discussed in this study,
in particular, the vehicle-mounted portable system
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Figure 6.1 Photos showing field surveys with: (a) portable Backpack and (b) vehicle-mounted portable systems.

owing to its portability, one of the future activities will
investigate different orientation options of the LiDAR
unit to achieve an optimized coverage (and point
density) of roadside ditches while maximizing the data
acquisition throughput of the MLMS.
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